Who Should Sell Stocks?

Ren Liu

joint work with Paolo Guasoni and Johannes Muhle-Karbe

ETH Zürich

Imperial-ETH Workshop on Mathematical Finance 2015
Merton’s Problem (1969)

- Frictionless market consisting of one safe and one risky asset
- Constant investment opportunities and CRRA for the investor
- Maximize the expected utility of final wealth
- **Solution**: risky weight $\pi_t \equiv \pi_*$
Merton’s Problem with Proportional Transaction Costs

- No trading, if the risky weight is inside a certain no-trade region
- Minimal trading (of local-time type), if the boundaries of the no-trade region are breached
Merton’s Problem with Transaction Costs and Continuous Dividends
Merton’s Problem with Transaction Costs and Continuous Dividends

Merton’s Problem with $\varepsilon = 1\%$
Merton’s Problem with Transaction Costs and Continuous Dividends

Merton’s Problem and with $\varepsilon = 1\%$ and $\delta = 3\%$
Merton’s Problem with Transaction Costs and Continuous Dividends

Merton’s Problem with $\varepsilon = 1\%$
Merton’s Problem with Transaction Costs and Continuous Dividends

Merton’s Problem and with $\varepsilon = 1\%$ and $\delta = 3\%$

Motivation

- Buy-and-hold is only optimal for very particular preferences.
Motivation

- Buy-and-hold is only optimal for very particular preferences
- Jang 2007: numerical approach, but no new effect
Merton’s problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
This paper

- Merton’s problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)
Merton’s problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters

Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)

More complicated model might lead to simpler optimal solutions
This paper

- Merton’s problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)
- More complicated model might lead to simpler optimal solutions
- Closed form optimal strategies even with capital gains tax
Standing Assumptions:

- Black-Scholes dynamics with continuous dividends:
 \[\frac{dS_t}{S_t} = (r + \mu - \delta)dt + \sigma dW_t \]

- Proportional Transaction Costs: buy at the ask price \((1 + \varepsilon)S\), sell at the bid price \((1 - \varepsilon)S\)

- Constant Relative Risk Aversion \(0 < \gamma \neq 1\)

- Infinite planning horizon

- Frictionless solution: \(0 < \pi_* = \frac{\mu}{\gamma \sigma^2} < 1\), i.e., no short or levered positions
Goal: maximize the equivalent safe rate ESR among all admissible strategies:

$$\max \left(\liminf_{T \to \infty} \frac{1}{T} \log \mathbb{E} \left[(\Xi_T)^{1-\gamma} \right]^{\frac{1}{1-\gamma}} \right)$$

- \(\Xi_t\) = liquidation value at time \(t\)
- admissible "=" self financing and \(\Xi_t \geq 0\)
Main Results: Parameter assumption

Set

\[\pi^\dagger_\pm(\lambda) = \frac{\mu \pm \epsilon \delta/(1 \mp \epsilon) \pm \sqrt{\lambda^2 \pm 2\mu \epsilon \delta/(1 \mp \epsilon) + (\epsilon \delta/(1 \mp \epsilon))^2}}{\gamma \sigma^2} \]

\[\pi_-(\lambda) = \pi^\dagger_-(\lambda), \quad \pi_+(\lambda) = \min\left(\pi^\dagger_+, 1\right). \]

Suppose one of the following condition is satisfied:

(a) there exists \(\lambda > 0 \) such that \(\pi_+(\lambda) < 1 \) and the solution \(w(\cdot, \lambda) \) of terminal value problem also satisfies a certain initial condition.

(b) there exists \(\lambda > 0 \) such that \(\pi_+(\lambda) = 1 \) and the solution \(w(\cdot, \lambda) \) of a Riccati ODE with a limit condition at infinity also satisfies a certain initial condition.
Main Results: Optimal Policy

Theorem

In the presence of proportional transaction costs \(\varepsilon > 0 \) and a continuous yield \(\delta > 0 \) an investor trades to maximizes the equivalent safe rate. Then, under the previous assumption we have:

- It is optimal to keep the risky weight within the buying and selling boundaries \([\pi_-, \pi_+]\)
- The optimal equivalent safe rate \(\beta = r + (\mu^2 - \lambda^2)/2\gamma\sigma^2 \)
- In case of \(\pi_+ < 1 \) it holds

\[
\pi_{\pm} = \pi_* \pm \left(\frac{3}{2\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{1/3} \varepsilon^{1/3} \\
+ \frac{\delta}{\gamma\sigma^2} \left(\frac{2\gamma\pi_*}{3 (1 - \pi_*)^2} \right)^{1/3} \varepsilon^{2/3} + \mathcal{O}(\varepsilon) \quad \text{as} \quad \varepsilon \downarrow 0
\]
Figure: The no-trade region (vertical axis) plotted against the dividend yield δ (horizontal axis) for $\gamma = 3.45$ ($\pi^* = 90.6\%$), $\mu = 8\%$, $\sigma = 16\%$ and $\varepsilon = 1\%$.
Figure: The never-sell region (shaded) for pairs of dividend yield δ (horizontal axis) and frictionless portfolio weight π_* (vertical axis). Parameters are $\mu = 8\%$, $\sigma = 16\%$ and $\varepsilon = 1\%$.
Robustness

<table>
<thead>
<tr>
<th>π*</th>
<th>optimal</th>
<th>never sell</th>
<th>buy & hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1.67%</td>
<td>2.00%</td>
<td>4.67%</td>
</tr>
<tr>
<td>70%</td>
<td>1.58%</td>
<td>1.58%</td>
<td>4.21%</td>
</tr>
<tr>
<td>90%</td>
<td>1.52%</td>
<td>1.52%</td>
<td>3.70%</td>
</tr>
</tbody>
</table>

Table: Relative equivalent safe rate loss of the optimal ([π−, π+]), never sell ([π−, 1]) and buy-and-hold ([0, 1]). These numbers are computed using Monte Carlo simulation with \(T = 20 \), time step \(dt = 1/250 \) and sample size \(N = 2 \cdot 10^7 \), \(\mu = 8\% \), \(\sigma = 16\% \), \(r = 1\% \), \(\delta = 2\% \), and \(\varepsilon = 1\% \).
Robustness with respect to Taxes

- **Dividend Tax**: suppose the effective dividend rate $= \delta(1 - \tau)$ with $0 < \tau < 1$ and the expected, ex-dividend return remains $\mu - \delta$
Robustness with respect to Taxes

- **Dividend Tax**: suppose the effective dividend rate is \(\delta(1 - \tau) \) with \(0 < \tau < 1 \) and the expected, ex-dividend return remains \(\mu - \delta \).
- This model is equivalent to a model without dividend tax but with a dividend yield \(\tilde{\delta} = \delta(1 - \tau) \) and expected total return \(\tilde{\mu} = \mu - \delta \tau \).
Robustness with respect to Taxes

- **Dividend Tax**: suppose the effective dividend rate $= \delta (1 - \tau)$ with $0 < \tau < 1$ and the expected, ex-dividend return remains $\mu - \delta$

- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta} = \delta (1 - \tau)$ and expected total return $\tilde{\mu} = \mu - \delta \tau$

- **Capital Gains Tax**: Sales of the risky asset induces a tax payment or credit of $\alpha (S_t - B_t)$ with $0 < \alpha < 1$ (B is the cost basis process/reference value)
Robustness with respect to Taxes

- **Dividend Tax**: suppose the effective dividend rate $= \delta(1 - \tau)$ with $0 < \tau < 1$ and the expected, ex-dividend return remains $\mu - \delta$

- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta} = \delta(1 - \tau)$ and expected total return $\tilde{\mu} = \mu - \delta\tau$

- **Capital Gains Tax**: Sales of the risky asset induces a tax payment or credit of $\alpha(S_t - B_t)$ with $0 < \alpha < 1$ (B is the cost basis process/reference value)

Taxes

<table>
<thead>
<tr>
<th>π_*</th>
<th>$[\pi_-, \pi_+]_{\text{ave}}$</th>
<th>$[\pi_-, \pi_+]_{\text{ss}}$</th>
<th>never sell</th>
<th>buy & hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2.41%</td>
<td>2.41%</td>
<td>2.07%</td>
<td>4.48%</td>
</tr>
<tr>
<td>70%</td>
<td>1.91%</td>
<td>1.91%</td>
<td>1.64%</td>
<td>3.55%</td>
</tr>
<tr>
<td>90%</td>
<td>1.36%</td>
<td>1.36%</td>
<td>1.36%</td>
<td>2.94%</td>
</tr>
</tbody>
</table>

Table: Relative equivalent safe rate loss of the capital gains tax adjusted optimal ($[\pi_-, \pi_+]$), never sell ($[\pi_-, 1]$) and buy-and-hold ($[0, 1]$). These numbers are computed using Monte Carlo simulation with $T = 20$, time step $dt = 1/250$ and sample size $N = 2 \cdot 10^7$, $\mu = 8\%$, $\sigma = 16\%$, $\alpha = 20\%$, $\tau = 20\%$, $r = 1\%$, $\delta = 2\%$ and $\varepsilon = 1\%$.
Objective function cf. Janecek and Shreve (2004), Shreve and Soner (1994)

$$\max \left(\frac{1}{1 - \gamma} \mathbb{E} \left[\int_0^\infty e^{-\rho t} C_t^{1-\gamma} dt \right] \right)$$

For $\varepsilon = 0$ we have

$$\frac{C^*_t}{X_t + Y_t} = \frac{\rho}{\gamma} + \left(1 - \frac{1}{\gamma} \right) \left(r + \frac{\mu^2}{2\gamma \sigma^2} \right)$$

This consumption policy is approximately optimal even with small proportional transaction costs (Kallsen and Muhle-Karbe 2013)
Consumption

<table>
<thead>
<tr>
<th>(\pi_*)</th>
<th>([\pi_{js}^-, \pi_{js}^+])</th>
<th>never sell</th>
<th>buy & hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1.00%</td>
<td>1.67%</td>
<td>2.00%</td>
</tr>
<tr>
<td>70%</td>
<td>0.53%</td>
<td>1.05%</td>
<td>1.05%</td>
</tr>
<tr>
<td>90%</td>
<td>0.22%</td>
<td>0.65%</td>
<td>0.65%</td>
</tr>
</tbody>
</table>

Table: Relative equivalent safe rate loss of the asymptotically optimal \([\pi_{js}^-, \pi_{js}^+]\), never sell \([\pi_-, 1]\) and simple buy-and-hold \([0, 1]\) strategies with \(\pi_{js}^\pm\) as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with \(T = 50\), time step \(dt = 1/250\), sample size \(N = 2 \times 10^7\), \(\mu = 8\%\), \(\sigma = 16\%\), \(\rho = 2\%\), \(r = 1\%\), \(\delta = 3\%\), \(\tau = 0\%\) and \(\varepsilon = 1\%\).
Consumption

<table>
<thead>
<tr>
<th>π_*</th>
<th>$[\pi_{js}^-, \pi_{js}^+]$</th>
<th>never sell</th>
<th>buy & hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1.00%</td>
<td>1.33%</td>
<td>2.33%</td>
</tr>
<tr>
<td>70%</td>
<td>0.53%</td>
<td>0.79%</td>
<td>1.05%</td>
</tr>
<tr>
<td>90%</td>
<td>0.22%</td>
<td>0.22%</td>
<td>0.22%</td>
</tr>
</tbody>
</table>

Table: Relative equivalent safe rate loss of the asymptotically optimal $([\pi_{js}^-, \pi_{js}^+])$, never sell $([\pi_-, 1])$ and simple buy-and-hold $([0, 1])$ strategies with π_{js}^\pm as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with $T = 50$, time step $dt = 1/250$, sample size $N = 2 \times 10^7$, $\mu = 8\%$, $\sigma = 16\%$, $\rho = 2\%$, $r = 1\%$, $\delta = 4\%$, $\tau = 0\%$ and $\varepsilon = 1\%$.
Suggestions and Limitations

- Retirement planning: investors with moderate risk aversions should avoid selling.
- After the retirement: gradually liquidate stocks to finance the required consumption or invest in high dividend funds.
- Dynamic Buy-and-Hold might be suboptimal for:
 - small transaction costs
 - low dividend yields
 - large risk aversions
 - high consumption rates
Heuristic Derivation

- Martingale Optimality Condition & long run Ansatz \leadsto the reduced HJB equation/ free boundary problem
Heuristic Derivation

- Martingale Optimality Condition & long run Ansatz \(\leadsto\) the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \(\leadsto\) the boundaries of the no-trade region \(\leadsto\) fixed boundary problem (depending on \(\lambda\))
Heuristic Derivation

- Martingale Optimality Condition & long run Ansatz \leadsto the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2 v''(z), zv'(z), v(z), \delta v'(z)$
Heuristic Derivation

- Martingale Optimality Condition & long run Ansatz \Rightarrow the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \Rightarrow the boundaries of the no-trade region \Rightarrow fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2 v''(z), zv'(z), v(z), \delta v'(z)$
- We use a "power" transformation (cf. Jang (2007)) of the HJB equation \Rightarrow Whittaker equation (explicit solutions in terms of the Whittaker functions)
Heuristic Derivation

- Martingale Optimality Condition & long run Ansatz \leadsto the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2 v''(z), zv'(z), v(z), \delta v'(z)$
- We use a "power" transformation (cf. Jang (2007)) of the HJB equation \leadsto Whittaker equation (explicit solutions in terms of the Whittaker functions)
- The boundary conditions yield the characterization of the gap parameter λ
Construction of Shadow Market \((S^0, \tilde{S})\)

Shadow Price Process \(\tilde{S}\):

- Lies within the bid-ask spread \([(1 - \varepsilon)S, (1 + \varepsilon)S] \) a.s.
- Existence of a long-run optimal strategy, i.e.,
 - Finite variation strategy
 - Self-financing strategy and solvent w.r.t. \(\tilde{S}\)
 - Maximizes the equivalent safe rate w.r.t. \(\tilde{S}\)
 - Same dividend payments \(\tilde{\delta} \tilde{S} = \delta S\)
 - Entails buying only when \(\tilde{S}_t = (1 + \varepsilon)S_t\)
 - Entails selling only when \(\tilde{S}_t = (1 - \varepsilon)S_t\)
Verification

- Optimality of the candidate strategy in shadow market (cf. Guasoni and Robertson 2012)
 - (super-) Martingale measure \Rightarrow upper bound of the finite horizon ESR
 - Candidate strategy \Rightarrow lower bound of the finite horizon ESR
 - Upper bound $=$ lower bound as $T \to \infty$

- Optimality of the candidate strategy in original market
 - Property of the shadow market
Thank You!