Programme Specification for the Physics / Physics with Theoretical Physics MSci Programmes

PLEASE NOTE. This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. This specification provides a source of information for students and prospective students seeking an understanding of the nature of the programme and may be used by the College for review purposes and sent to external examiners. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each element can be found in the course handbook or on-line at https://workspace.imperial.ac.uk/physics/Public/physicsdocs/FreshersHandbook2012.pdf. The accuracy of the information contained in this document is reviewed by the College and may be checked by the Quality Assurance Agency.

1. Awarding Institution: Imperial College London
2. Teaching Institution: Imperial College London
3. External Accreditation by Professional / Statutory Body: Institute of Physics
4. Name of Final Award: MSci
5. Programme Title: Physics
 Physics with Theoretical Physics
6. Name of Department / Division: Physics
7. Name of Faculty: Natural Sciences
8. UCAS Code (or other coding system if relevant): F303 (MSci)
 F390 (MSciT)
9. Relevant QAA Subject Benchmarking Group(s) and/or other external/internal reference points
 - Physics, Astronomy and Astrophysics (2008)
 http://www.qaa.ac.uk/Publications/InformationAndGuidance/Documents/Physics08.pdf
 - “The Physics Degree”, Institute of Physics (2009)
10. Level(s) of programme within the Framework for Higher Education Qualifications (FHEQ):
 | Bachelor’s (BSc, BEng, MBBS) | Level 6 |
 | Integrated Master’s (MSci, MEng) | Levels 6 and 7 |
11. Mode of Study: Full Time
12. Language of Study: English

1 MSci Physics (F303) / Physics with Theoretical Physics (F390) Programme Specification Nov 2012
14. **Educational aims/objectives of the programme**

The programme aims/objectives are to:

- provide high quality education in physics within an environment committed to excellence in both teaching and research;
- attract well-qualified students and provide intellectually challenging degree programmes containing an appropriate amount of flexibility so that students can develop their specialist interests, and so equip themselves to follow a wide variety of careers. These careers include scientific research; physics-related careers in industry, public service or the media; and other employment which values the analytical, mathematical and computational skills of a well-trained physics graduate;
- educate students in the core of physics, including substantial practical and experimental physics, and lead students into a deeper understanding and appreciation of the frontiers of knowledge in some chosen aspects of physics;
- prepare students for the transition to a career as a professional physicist;
- For MSciT: extend further the education of students in advanced mathematics and theoretical physics with a reduced but still significant experimental component.

15. **Programme Learning Outcomes**

1. **Knowledge and Understanding**

Knowledge and Understanding of:

1. the fundamentals, which all students need to cover, including electromagnetism, optics, quantum and classical mechanics, relativity, statistical physics and thermodynamics, wave phenomena and the properties of matter.
2. the application of the fundamental principles to particular areas. These include nuclear and particle physics, condensed matter physics and atomic structure.
3. a selection of subjects which students study in greater depth, learning of current developments at the frontiers of the subject.

Teaching/learning methods and strategies

Acquisition of 1 to 4 is through core courses in years 1 to 3 together with more advanced specialist options in years 2, 3 and 4. Lectures are an integral part of course elements, and are supported by a variety of other teaching and learning methods, including tutorials, seminars, problem classes, laboratory work and computer-based work. Throughout the four years, students engage in private study in which they work through set problem sheets and assimilate the content of lectures. They engage in project work in years 1 and 4. Assessment of knowledge and understanding is through a combination of unseen written examinations, assessed problem solutions, vivas, laboratory and project reports and presentations.

2. **Skills and other Attributes**

Intellectual Skills

Students will learn how to:

1. formulate and tackle problems in physics, including the identification of appropriate physical principles and the use of special and limiting cases and order-of-magnitude estimates, to arrive at a solution which is presented with an explicit statement of assumptions and approximations.
2. use mathematics to describe the physical world, selecting appropriate equations, constructing models, interpreting mathematical results and critically comparing them with experiment and observation.
3. participate, under supervision, in an extended physics investigation close to the frontiers of knowledge.
4. For MSciT: appreciate the use of rigour in mathematics

Teaching/learning methods and strategies
All lecture courses are accompanied by problem sheets, which students work through privately, and are supported by (i) small group tutorials in years 1 to 3, (ii) problem classes in years 1 & 2, (iii) seminars in groups of around 18 in year 1, (iv) access to lecturers in 'Office hours', (v) "rapid Feedback" classes for Level 3 and 4 theoretical option courses. Assessment is primarily by unseen examination, notably the Comprehensive (synoptic) papers in year 3. Additionally, problem solutions are assessed as coursework in Years 1 and 2. Students acquire 3 in the context of the final year project.

Practical Skills
Students will learn how to:

1. plan, execute and report the results of a complex extended experiment or investigation, using appropriate methods to analyse data and to evaluate the level of its uncertainty.
2. use appropriate software such as programming languages and packages in a physics investigation.

Teaching/learning methods and strategies
Laboratory classes take place in years 1 to 3 (years 1 and 2 for MSciT) with occasional supporting lectures. Experiments vary in duration from a few days to several weeks. Experiments are described by scripts. Students take computing classes in years 1 & 2 with further optional courses after that. Students are assessed by a mixture of written reports, keeping a lab book, interview, and interaction with demonstrators. Students further develop practical (MSci) or theoretical (MSciT) skills in the final year project.

Transferable Skills
Students will learn how to:

1. solve open-ended problems and problems with well-defined solutions by formulating problems in precise terms, identifying key issues and trying different approaches in order to make progress.
2. carry out an independent investigation using textbooks and other available literature, searching databases and interacting with colleagues and staff to extract important information.
3. communicate effectively by listening carefully and presenting complex information in a clear and concise manner orally, on paper and using ICT.
4. use analytical skills, paying attention to detail and using technical language correctly, to manipulate precise and intricate ideas, and to construct logical arguments.
5. work independently, use their initiative, organize themselves to meet deadlines, plan and execute an extended project.
6. work in groups, interacting constructively with others.
7. appreciate the financial and organizational context they will encounter in a career in science and technology.

Teaching/learning methods and strategies
Acquisition of 1 is partly through the methods and strategies outlined above, and specifically through tutorial and private study preparation for the two Comprehensive (synoptic) examination papers in year 3. Acquisition of 2, 3 & 4 comes through guided preparation of individual and group presentations and essays in years 1 & 2 and through a project in year 4. Acquisition of 5 is through an ICT class in year 1, through the use of IT in experimental classes and projects, and through guided preparation of presentations and a CV. Acquisition of 6 is initially through private study guided by tutors, project work guided by supervisors, laboratory classes guided by demonstrators, and seminar sessions on study skills. In the final year these skills are extended and integrated in a project.
Acquisition of 7 is through group work in and directed through seminars, tutorial discussion, and working in pairs in laboratory and in a final year group project. Acquisition of 8 is through the Research Interfaces course, designed to develop professional skills. Assessment is by essay, individual and group presentation, laboratory and computing reports, project reports, and by interview.

16. The following reference points were used in creating this programme specification

- FHEQ (Level 6 and 7)
- EHEA
- Course Handbook
- Subject Benchmark Statement
- PSRB documents (Institute of Physics)

17. Programme structure and features, curriculum elements (components), ECTS assignment and award requirements

Year One:
The total number of core lectures is about 180. Coursework, consisting of Assessed Problem Sheets in Terms 1 and 2, counts towards the assessment of all lecture courses at the level of 15%. In term 1 lectures are supported by about 30 problem classes with the whole class of about 240 and 7 tutorials in groups of 5 as well as 10 seminars in groups of 20. In term 2 support will be in the form of 30 classes in groups of 20. All ECTS count equally and the whole of year 1 counts towards 10.2% of the final degree mark.

Term one:
At the start of the year students attend a Mathematics Mastery Test. This does not count in the final degree mark but students who fail this test must pass a resit later in the year after attending special problem classes. All students attend lecture courses in Mathematics (15 ECTS total in terms 1 and 2) and Mechanics, Vibrations and Waves (8 ECTS). Professional Skills I, taught through seminars in term 1, together with problem solving taught through classes of 20 in terms 2 & 3, counts 4 ECTS in total. Laboratory and computing in terms 1 and 2 (total of approximately 80 timetabled hours) count 9 ECTS.

Term Two:
Students attend lecture courses in Electricity, Magnetism and Relativity (8 ECTS), and Quantum Physics and Structure of Matter (8 ECTS). MSci Students do Electronics (30 timetabled hours), while MSI Theory students do Mathematical Analysis (20 lectures) (4 ECTS).

Term Three:
The first few weeks of the term are used to complete the lecture courses started in term 2. All examinations take place in term 3, including a problem solving test that contributes towards the Professional Skills element. After the examinations, all students complete a project (generally in pairs) which counts 4 ECTS.

Students must pass all elements to proceed directly to year 2. Students who fail any of the examinations are required to attend the September resits, following which those who pass their failed elements will be qualified to proceed, but those who fail any resits are required to withdraw and may have one more resit attempt the following summer.

Year Two:
The total number of core lectures is about 160. Core lectures are supported by about 39 problem classes and about 24 tutorials in groups of 4. Coursework, consisting of Assessed Problem Sheets in Terms 1 and 2, counts towards the assessment of all lecture courses at the level of 15%. All ECTS count equally and the whole of Year 2 counts 20.4% towards the final degree mark.

Term one:
All students attend lecture courses in Quantum Mechanics (8 ECTS) and Thermodynamics & Statistical Physics (8 ECTS). Laboratory and computing (96 timetabled hours extending over both terms) count 10 ECTS. Statistics of Measurement and Mathematics together count 9 ECTS. Professional Skills II (A CV exercise and an assessed essay) counts 2 ECTS.
Term Two:
All students attend core lecture courses in Electrons in Solids and Applications of Quantum Mechanics (together 8 ECTS), and Electromagnetism and Optics (together 9 ECTS). MSci students also choose one extra Level 2 lecture course (about 27 lectures) or a Language (63 hours) (6 ECTS). MSciT students must take the Level 2 Mathematical Methods option.

Term Three:
The first few weeks of the term are used to complete the lecture courses started in term 2. All examinations take place in term 3.

To proceed directly to year 3 students must pass all course elements and have an overall mark of at least 60%. Students who fail any of the examinations are required to attend the September resits, following which those who pass their failed elements will be qualified to proceed, but those who fail any resits are required to withdraw and may have one more resit attempt the following summer. Students who have passed all elements, after resits, but who fail to achieve the 60% threshold are required to transfer to the BSc degree.

Year Three:
All ECTS count equally except the comprehensive element, which has additional weight. The whole of Year 3 counts 37.4% towards the final degree mark, of which the comprehensive element counts 11.8%.

Terms one and two:
Core Physics III (total 18 ECTS): All students attend approximately 60 core lectures in Solid State and Atomic & Molecular Physics (Term 1, 6 ECTS) and Nuclear & Particle Physics (Term 2, 6 ECTS). MSci students attend laboratory (100 timetabled hours, 6 ECTS) and MSciT students take the Advanced Classical Physics option (6 ECTS). In exceptional circumstances where the laboratory course is not suitable an alternative assessment may be provided at the discretion of the Head of Department.

MSci Options III (total 30 ECTS): All students choose five options (27 lectures, 6 ECTS each) from a list of specialised lecture courses at Level 3 and languages/humanities/management courses or an approved course in another department. Students may choose to replace one of the options with an essay. They may include in these choices up to one Level 2 course and one Level 4 course. Prerequisites are indicated in course documentation. For MSciT students at least six theoretical options must be taken in total in years 3 and 4.

Comprehensive Examinations and Professional Skills III (12 ECTS). All students take the two Comprehensive examinations, prepared for by approximately 24 weekly tutorials throughout Terms 1 and 2. Professional Skills III (an assessed presentation) counts 11% of the element.

Term Three:
All examinations take place in term 3.

Students must pass all three elements at 40% overall in order to proceed to the final year. Students who fail any element are required to attend the September resits for those components in which they achieved less than 40%, following which those who pass their failed elements will be qualified to progress. Those who fail to achieve 40% for any element are required to withdraw and may have one more resit attempt the following summer.

Year Four:
All ECTS count equally. The whole of Year 4 counts 32% towards the final degree mark.

Terms one and two:
All students take the Research Interfaces course (Term 1, 8 ECTS).
All students take a two-term project (22 ECTS), which for MSciT students must be theoretical.

MSci Options IV (total 30 ECTS): All students choose five options (27 lectures, 6 ECTS each) from a list of specialised lecture courses at Level 4. They may include in these choices up to one Level 3 course if a Level 4 course was taken in Year 3. Prerequisites are indicated in course documentation. For MSciT students at least six theoretical options must be taken in total in years 3 and 4.

Term Three:

All examinations take place in term 3.

Students must pass all three elements at 40% overall in order to gain a degree. Students who fail any element are required to attend the September resits for those components in which they achieved less than 40%, following which those who pass their failed elements will be qualified to graduate. Those who fail to achieve 40% for any element are required to withdraw and may have one more resit attempt the following summer. A final degree class is awarded on the basis of the final mark (see section 22).

18. Support provided to students to assist learning (including collaborative students, where appropriate):

- Course handbook (also at https://www8.imperial.ac.uk/content/dav/ad/workspaces/physics/physicsdocs/students/ug/info/Freshers%20Handbook/Handbook%202011.pdf
- Departmental web site (www.imperial.ac.uk/physics) with details of all degree programmes, lecture courses, laboratory work and projects, as well as staff contact details and other information
- Blackboard web site providing electronic resources including lecture course handouts, problem sheets and solutions, discussion forums and online quizzes
- Induction talks and meetings in the first week
- Occasional meetings about course structure, option choices etc spread throughout the programme
- Weekly seminars in the first year to facilitate student networking, to provide an occasion for students to support each other and mutually develop under guidance their study skills
- Seminars in the second year to give guidance on essay writing and the preparation of a CV
- Seminars in the third year to develop presentation skills
- A personal tutor, providing pastoral support, staying with the student throughout all four years
- A Senior Tutor available by appointment throughout each term
- College Tutors
- The Health Centre and student counsellors available on site
- A Union advisor
- Academic tutorials with a member of academic staff in years 1, 2 & 3; further tutorials with post-doctoral Research Associates in years 2 and 3
- ‘Office Hours’ when course lecturers are available for consultation
- A Computer Suite with about 100 PCs with access to Blackboard, email, the world-wide web and other software including MS Office, a C++ compiler and Matlab.
- Facilities for scanning, photocopying and printing
- A central library containing multiple copies of all course texts and giving access to a wide range of electronic resources
- Two study areas and a room containing copies of text books within the department
- College booklet on ‘Learning to Learn’
- A student common room area with drinks and nibbles available
- A staff/student committee meeting monthly during term
- Nine student representatives
- A student ‘PhySoc’ society
- A departmental careers officer and a College careers service
- A centralised undergraduate office open 9-5 during term providing information and copies of all handouts
• Three well-equipped undergraduate laboratories with demonstrator support and staffed by technicians
• The teaching programme is informed through departmental links with industry and Government laboratories, individuals' contacts with industry and departmental spin-off companies

19. Criteria for admission:

The minimum qualifications for admission are three full GCE A-levels at grades A*AA (380 UCAS points) including Mathematics (at A*) and Physics. The third A level is not specified, but it is usually Chemistry or Further Mathematics, and it must not be General Studies. Scottish qualifications (Advanced Highers) are considered on the basis of their equivalence under the UCAS tariff. Eligible overseas qualifications are the International, European and French Baccalaureates, the German Abitur and certain other qualifications giving university entrance in other countries. Other qualifications are considered on an individual basis; applicants must provide evidence of ability to study at a high level.

20. Processes used to select students:

All UK students are invited to interview where they are given an introduction to the department and the degree programmes by a member of the admissions team, followed by an individual interview. They are also taken on a short tour of the campus by a current undergraduate. Admissions decisions are based on the UCAS application form and feedback from the interviewer. Overseas applicants are dealt with on an individual basis.

21. Methods for evaluating and improving the quality and standards of teaching and learning

a) Methods for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards:

The external examiner system and Boards of Examiners are central to the process by which the College monitors the reliability and validity of its assessment procedures and academic standards. Boards of Examiners comment on the assessment procedures within the College and may suggest improvements for action by relevant departmental teaching Committees.

The Faculty Studies Committees review and consider the reports of external examiners and accrediting bodies and conduct periodic (normally quinquennial) and internal reviews of teaching provision. Regular reviews ensure that there is opportunity to highlight examples of good practice and ensure that recommendations for improvement can be made.

At programme level, the Head of Department/Division has overall responsibility for academic standards and the quality of the educational experience delivered within the department or division.

Most of the College's undergraduate programmes are accredited by professional engineering and science bodies or by the General Medical Council. Accreditation provides the College with additional assurance that its programmes are of an appropriate standard and relevant to the requirement of industry and the professions.

b) Committees with responsibility for monitoring and evaluating quality and standards:

The Senate oversees the quality assurance and regulation of degrees offered by the College. It is charged with promoting the academic work of the College, both in teaching and research, and with regulating and supervising the education and discipline of the students of the College. It has responsibility for approval of changes to the Academic Regulations, major changes to degree programmes and approval of new programmes.

The Quality Assurance Advisory Committee (QAAC) is the main forum for discussion of QA policy and the regulation of degree programmes at College level. QAAC develops and advises the Senate on the implementation of codes of practice and procedures relating to quality assurance and audit of
quality and arrangements necessary to ensure compliance with national and international standards. QAAC also considers amendments to the Academic Regulations before making recommendations for change to the Senate. It also maintains an overview of the statistics on completion rates, withdrawals, examination irregularities (including cases of plagiarism), student appeals and disciplinaries.

The **Faculty Studies Committees** and **Graduate School Postgraduate Quality Committees** are the major vehicle for the quality assurance of undergraduate / postgraduate courses respectively. Their remit includes: setting the standards and framework, and overseeing the processes of quality assurance, for the areas within their remit; monitoring the provision and quality of e-learning; undertaking reviews of new and existing courses; noting minor changes in existing programme curricula approved by Departments; approving new elements and components, changes in element titles, major changes in examination structure and programme specifications for existing programmes; and reviewing proposals for new programmes, and the discontinuation of existing programmes, and making recommendations to Senate as appropriate.

The **Faculty Teaching Committees** maintain and develop teaching strategies and promote inter-departmental and inter-faculty teaching activities to enhance the efficiency of teaching within Faculties. They also identify and disseminate examples of good practice in teaching.

Departmental Teaching Committees have responsibility for the approval of minor changes to course curricula and examination structures and approve arrangements for course work. They also consider the details of entrance requirements and determine departmental postgraduate student numbers. The Faculty Studies Committees and the Graduate School Postgraduate Quality Committees receive regular reports from the Departmental Teaching Committees.

c) **Mechanisms for providing prompt feedback to students on their performance in course work and examinations and processes for monitoring that these named processes are effective:**

- All students receive feedback on their progress from their academic tutor in weekly tutorials.
- Assessed coursework in Years 1 and 2 is returned to students with comments within approximately one week of submission. Students may discuss their marks with their academic tutor if they wish.
- Laboratory and computing reports are returned to students normally within 2 weeks of submission and students have the opportunity of discussing their report with the marker if they wish. Heads of Laboratories are responsible for ensuring that feedback is prompt and effective.
- Students are encouraged to discuss their examination performance with their Personal Tutor.

d) **Mechanisms for gaining student feedback on the quality of teaching and their learning experience and how students are provided with feedback as to actions taken as a result of their comments:**

- Feedback is obtained from students mainly through the representatives on the Staff Student Committee which meets monthly during term.
- Comments are also passed through academic tutors, personal tutors, the Senior Tutor and the Undergraduate Office.
- Significant items are passed to the Teaching Committee for further discussion and action if appropriate.
- Minutes from the Staff Student Committee are posted on the web and circulated to the members of the committee.
- Feedback from SOLE and from other Departmental surveys on teaching is considered at both the Staff Student Committee and the Teaching Committee.
- Students are also encouraged to discuss any teaching issues with their lecturers, laboratory demonstrators and tutors.

e) **Mechanisms for monitoring the effectiveness of the personal tutoring system:**

- Feedback from students to the Senior Tutor
f) Mechanisms for recognising and rewarding excellence in teaching and in pastoral care:

Staff are encouraged to reflect on their teaching, in order to introduce enhancements and develop innovative teaching methods. Each year College awards are presented to academic staff for outstanding contributions to teaching, pastoral care or research supervision. A special award for Teaching Innovation, available each year, is presented to a member of staff who has demonstrated an original and innovative approach to teaching. Nominations for these awards come from across the College and students are invited both to nominate staff and to sit on the deciding panels.

Within the department, the following additional mechanisms operate:

- Departmental informal “Lecturer of the Year” competition
- Feedback from students to Staff Student Committee leading to nominations for College Teaching and Pastoral Care awards
- SOLE questionnaire results
- Informal feedback via academic and personal tutors

22. Regulation of Assessment

a) Assessment Rules and Degree Classification:
For undergraduate programmes classification of degrees will be according to the following range of marks:

- First class: 70.0 - 100%
- Second class (upper division): 60.0 - 69.9%
- Second class (lower division): 50.0 - 59.9%
- Third class: 40.0 - 49.9%

b) Marking Schemes for undergraduate and postgraduate taught programmes:
The Pass Mark for all undergraduate course elements is 40%. From October 2008 entry all undergraduates are required to pass all their course elements to progress to the next year.

For written examinations, marking schemes are specific to a particular examination. Please note that the department applies modest scaling to examination results if the results give an anomalous number of failures or first class marks.
For undergraduate laboratory/computing and project assessment schemes, please see:
- http://www3.imperial.ac.uk/physicsuglabs/firstyearlab/assessment (Year 1)
- http://www3.imperial.ac.uk/physicsuglabs/secondyearlab/assessment (Year 2)
- http://www3.imperial.ac.uk/physicsuglabs/thirdyearlab/assessment (Year 3)
- http://www3.imperial.ac.uk/physicsuglabs/thirdyearprojects/assessment (BSc projects)
- http://www3.imperial.ac.uk/physicsuglabs/msciprojects/projectassessment (MSci projects)

c) Processes for dealing with mitigating circumstances:
For undergraduate programmes: Candidates with mitigating circumstances are not subject to the borderline restrictions but should be considered individually. However, as a general principle, candidates whose marks are more than 5% below the borderline should not normally be raised to the next higher classification. Where the Board of Examiners determines that a higher classification should be awarded extra marks should be applied to bring the final marks into the higher range.

d) Processes for determining degree classification for borderline candidates:
For undergraduate programmes: Candidates who fall no more than 2.5% below the minimum mark for a higher honours classification shall be eligible for review of their final classification; this review could include an oral examination or practical test or other mechanism appropriate to the discipline. Candidates whose marks are below the 2.5% borderline may be considered for a higher honours classification where certain provisions apply. In the Physics department, borderline candidates and normally given an oral examination (conducted by an external examiner together with an internal examiner). Where the Board of Examiners determines that a candidate should be awarded a higher honours classification extra marks should be applied to bring their final marks into the higher range. Detailed records of all decisions should be recorded in the minutes of the meeting of the Board.

e) Role of external examiners:
The primary duty of external examiners is to ensure that the degrees awarded by the College are consistent with that of the national university system. External examiners are also responsible for approval of draft question papers, assessment of examination scripts, projects and coursework (where appropriate) and in some cases will attend viva voce and clinical examinations. Although external examiners do not have power of veto their views carry considerable weight and will be treated accordingly. External examiners are required to attend each meeting of the Board of Examiners where recommendations on the results of individual examinations are considered. External examiners are required to write an annual report to the Rector of Imperial College which may include observations on teaching, course structure and course content as well as the examination process as a whole. The College provides feedback to external examiners in response to recommendations made within their reports.

23. Indicators of Quality and Standards
- Favourable comments by External Examiners
- High proportion of students achieving a high degree classification
- Positive reports from external audit reviews and accreditation visits (The Institute of Physics Accreditation report (2004) is available from the Department)
- First destination data for BSc and MSci graduates, showing a high proportion find appropriate employment or enter further postgraduate training
- Independent review of the quality of the educational provision of the Physics Department by the Quality Assurance Agency subject review process in 1998 achieving an excellent grading of 22 out of a maximum 24 points

24. Key sources of information about the programme can be found in
Course handbook:
https://www8.imperial.ac.uk/content/dav/ad/workspaces/physics/physicsdocs/students/ug/info/Fresher's%20Handbook/Handbook%202011.pdf
Course syllabus:
https://www8.imperial.ac.uk/content/dav/ad/workspaces/college/pdfs/ugsyllabus/UG_syllab_Physics_11-12.pdf
Prospectus:
http://www3.imperial.ac.uk/ugprospectus/facultiesanddepartments/physics

10 MSci Physics (F303) / Physics with Theoretical Physics (F390) Programme Specification Nov 2012
Physics Admissions website:
http://www3.imperial.ac.uk/physics/admissions
Department of Physics website
http://www3.imperial.ac.uk/physics