Multifunctional Structural Power Composites – Challenges and Future Opportunities

Prof Emile S. Greenhalgh CEng FIMMM †, Prof Milo Shaffer*, Prof Anthony Kucernak*, Prof Alexander Bismarck ‡

†Aeronautics, ‡Chemical Engineering, *Chemistry
Introduction and Motivation
Motivation – ‘Massless Energy’

• Conventional *reductionalist* design approach - maximise efficiency of individual subcomponents.
 ⇒ Difficult compromises;
 ⇒ Limiting technological advance and stifling innovative design.

• Different *holistic* approach; materials which simultaneously perform more than one function.
 ⇒ *Simultaneously carry high mechanical loads whilst storing/delivering electrical energy.*

• Carbon fibres are attractive - commonly used as both electrodes and structural reinforcements.

• Synergy of lamination; common to both electrochemical devices and structural composites
Smart Materials (Multifunctional Structures) –
Implanting of secondary materials or devices within a parent to imbue additional functionality...
- e.g. embedding miniature or shaped sensors or actuators within structural materials

Multifunctional Materials –
Constituents synergistically and holistically perform two very different roles....
- e.g. a nanostructured carbon lattice carrying mechanical load whilst intercalating lithium ions for electrical energy storage
- Emerging, highly interdisciplinary field

Supercapacitor Device

Conventional Supercapacitor

Structural Supercapacitor

Electrolyte: Nanostructured interpenetrating structural matrix/ionic liquid

Nanoporous membrane

Electrodes: Carbon aerogel/spread low carbon fibres
Constituent Development and Composite Performance
Reinforcement Development

Raw T300 fibre

- Resorcinol-formaldehyde gel pyrolysis
- KOH heat-treatment
- In-situ growth of carbon nanotubes

- Aquacetyl solution sizing

- CAG-coated fibre
- KOH activated fibre
- CNT-sized fibre
- CNT-grown fibre
Reinforcement – Different Approaches

N.B. As-received CF=0.2 m²/g
Multifunctional Resin Development

- Development & characterisation of nanostructured matrix materials with optimum electrolyte & mechanical properties.
- Gel polymer electrolytes
 \(\Rightarrow\) Improved durability, cheap, easy to prepare & wide voltage window.
- Exploit two phase system that spontaneously forms a bi-continuous nanostructure;
 \(\Rightarrow\) One phase provides ionic conductivity, the other structural rigidity.

![Diagram of multifunctional resin development](image)

- Epoxy Resin (R) + Liquid Electrolyte (LE) → Solution of R+LE
- Ionic conductivity 0.43 mS/cm, Young's Modulus 0.23 GPa
- Ionic conductivity 0.15 mS/cm, Young's Modulus 0.90 GPa
Device Evolution

1st Generation – ACF/PEGDGE
\(\Gamma = 0.00001 \text{Wh/kg} \)
\(P = 0.14 \text{W/kg} \)
\(E \approx 25 \text{GPa} \)

2nd Generation – CF/CNT/Epoxy/IL
\(\Gamma = 0.0089 \text{Wh/kg} \)
\(P = 0.0021 \text{W/kg} \)
\(E \approx 60 \text{GPa}; G_{12} \approx 0.5 \text{GPa} \)

Conventional supercapacitor
\(\Gamma = 2.9 \text{Wh/kg} \) & \(P = 6900 \text{W/kg} \)

3rd Generation – CF/CAG/Epoxy/IL

Structural; \(\Gamma = 0.2 \text{Wh/kg}; P = 18 \text{W/kg} \) & \(G_{12} \approx 0.6 \text{GPa} \)

Semi-structural; \(\Gamma = 1.0 \text{Wh/kg}; P = 290 \text{W/kg} \)
Demonstrators
Technology Demonstrators

• Evaluation and assessment of benchtest components utilising multifunctional composite materials

 ⇒ *Demonstration of multifunctional structures (Plenum cover) on Volvo S80 to explore the manufacturing and systems issues.*

 ⇒ *Small scale demonstration of structural supercapacitors using a RC car.*

 ⇒ *Full scale boot lid incorporating 16 structural supercapacitor cells.*
Technology Demonstrator – Plenum Cover

- Design and manufacture of demonstrator components utilising multifunctional composite materials.
 - First stage *(multifunctional structure)* by embedding batteries into CFRP laminate
- Any energy storage capacity that could improve energy storage or reduce overall structural/systems weight would be valuable.

![6.2kg](image1)

![2.5kg](image2)
Technology Demonstrator – Boot lid Design

13kg

5.2kg
Technology Demonstrator – Boot-lid
Challenges

• Current performance - c.f. conventional supercapacitor (2.9Wh/kg & 6900W/kg)
 ⇒ 1Wh/kg & 290W/kg (semi-structural);
 ⇒ 0.2Wh/kg & 41W/kg (structural).

• Fundamental understanding of design and optimisation of interfaces (fibre/matrix and electrode/separator) for improved multifunctional performance.
 ⇒ Underpinning science needed to move field forward.

• Mechanical properties – still poor, particularly interface/matrix dominated.
 ⇒ Intermediate focus on stiffness dominated regime (i.e. Semi-structural).

• Engineering and fabrication challenges to be resolved.
 ⇒ Innovation needed to apply ‘moisture-free battery fabrication’ techniques to large scale composite production.

• Strategies to improve –
 ⇒ Power density – improve ionic conductivity and reduce separator distances.
 ⇒ Energy density – utilise hybrid/asymmetric devices.
 ⇒ Mechanical properties – microstructures with different lengthscales.
Future Opportunities

- **ICL/Chalmers/KTH – unrivalled level of experience in structural power**
- **Going beyond Smart Structures**
 - New interdisciplinary field of multifunctional materials;
 - Fertile ground for development of new technologies;
 - Novel material architectures - stimulating development of monofunctional electrical & mechanical materials;
 - Solutions for conventional composites - electrical conductivity (lightning strike).
- **Alternative electrochemistries**
 - Pseudocapacitance & hybrid/asymmetric devices;
 - Structural batteries highly promising (2x energy density of SOTA devices);
 - Added functionalities identified – sensing, actuation, energy harvesting.
- **Highly diverse range of potential applications**
 - Mainly transportation and aerospace driven to date;
 - As performance improves, sparked interest from other sectors (e.g. mobile electronics).
Batteries not included
The secrets of structural energy storage

The car’s body panels serve as a battery

IOM3
Materials World

Dagens Nyheter
http://www.dn.se/ekonomi/svenska-
forskare-gor-hela-bilen-till-batteri.

New York Times

Reuters
http://uk.reuters.com/video/2012/11/11/the-
future-electric-car-may-be-one-big-
b?videoid=239058045

Youtube Videos
www.youtube.com/watch?v=jZ7A51h6cwU
www.youtube.com/watch?v=j2qpDPcO7vg

The Economist

CNBC
www.energyopportunities.tv/Editorial-Features/An-
energy-storage-revolution
Plastic composite supercapacitor

New Scientist