FREQUENCY SCALING OF CATHETER-BASED MAGNETO-INDUCTIVE MR IMAGING DETECTORS

R.R.A. Symes¹, I.R. Young¹, and M. Rea²
¹EEE Dept., Imperial College London, UK
²Dept. of Radiology, Imperial College Healthcare NHS Trust, UK

ABSTRACT

Frequency scaling rules are introduced for catheter-based magneto-inductive magnetic resonance imaging detectors, intended for in vivo imaging of the vascular and biliary ductal systems. The design is based on a cascade of magnetically coupled L-C resonators, fabricated as a thin-film circuit and mounted on a catheter. Intrinsic safety is introduced using resonant elements designed to avoid coupling to uniform RF magnetic and electric fields. Mapping of reception patterns and high-resolution ¹H imaging are demonstrated in a 3 T clinical scanner.

INTRODUCTION

Radio frequency (RF) receivers are required for signal detection in magnetic resonance imaging (MRI). Although small resonant coils generally have low quality-factors, a larger filling factor can be obtained from close coupling to the signal source, leading to a greater overall signal-to-noise ratio (SNR) at the price of a reduction in field of view (FOV) [1]. Many small coils have been developed for high-resolution internal imaging of small vessels such as arteries [2] and for catheter tracking [3]. Such coils must be prevented from coupling to the external B₁ field of the transmitter, typically with passive or active diode-switched decoupling. Furthermore, long conductors must be avoided; because of the high RF dielectric constant of tissue [4], even short lengths may be rapidly heated due to standing wave excitation by the E field near transmitter coil capacitors [5]. Proposed solutions include transformer subdivision of cables [6, 7].

We have been developing an alternative based on magneto-inductive (MI) waveguides, linear arrays of magnetically coupled L-C resonators [8]. We have shown that such guides have similar properties to transformer-segmented cable [9], and have demonstrated a low-loss thin-film format [10]. Because the structure is smooth and flexible, it may be wrapped around a catheter scaffold and held in place with heat-shrink tubing (Fig. 1). As a result, it may potentially be applied to many functional catheters, including imaging probes for endoscopic delivery into the biliary ductal system.

Operation has been demonstrated in a 1.5 T clinical scanner [11]. Simple scaling rules are needed to adapt the design for higher fields capable of providing increased SNR without expensive iteration. The aim of this paper is to provide such rules and demonstrate imaging at 3 T.

DESIGN AND FREQUENCY SCALING

A magneto-inductive waveguide (Fig. 1) is a linear array of magnetically coupled L-C resonators with angular resonant frequency ω₀ = 1/√(LC). Assuming internal resistance R, the Q-factor is Q = ω₀L'/R. The resonators are coupled together by a mutual inductance M. As a result, the MI waveguide supports slow waves of circulating current. Propagation loss is minimized by maximizing M and Q, and at resonance the guide has the characteristic impedance Z₀M = M[8].

The guide may be coupled to a load with real impedance Z₀ (such as the input of a scanner) using a further magnetically coupled resonant element, which for generality has parameters R', L' and C' such that 1/(L'C') = ω₀ and Q' = ω₀L'/R'. However, the mutual inductance M' must be slightly different for impedance matching, and standard theory requires that ω₀M' = √(Z₀Z₀M). Similarly the system may be formed into a resonant receiver by the addition of a similar element acting as a detector. However, the mutual inductance M'' must again be different, and matching is achieved if ω₀M'' = √(RZ₀M).

Precessing nuclear dipoles may induce voltages in any of the loops, allowing the system to detect MRI signals along its entire length. These signals propagate to the load as MI waves [12]. However, sensitivity is highest at the tip, which behaves as a resonant detector.

In MI cable, the resonant elements are formed as thin-film components in copper-clad Kapton (Fig. 3a). The inductors are single-turn loops. A figure-of-eight layout is used to avoid coupling to external B₁ fields, and the element length A is taken to be shorter than half a wavelength in a medium with the relative dielectric constant εᵣ of tissue to avoid excitation of standing-wave resonances by external E fields. Since εᵣ = 77 at the frequency of ¹H MRI at 1.5 T (63.85 MHz), this length is
around 27 cm. The capacitors are parallel plate structures that use the substrate as an interlayer dielectric, and are split into two components to avoid the need for vias. To minimize width, capacitors are laid alongside inductors.

A cable is constructed by overlaying the adjacent elements to their maximum extent so that the period Λ is $= A/2$ (Fig. 3b). A receiver is constructed by addition of a detector and a demountable resonant transducer. Impedance matching at the detector is achieved by careful choice of the overlap b, while matching at the transducer is achieved by adjusting the position of a two-turn spiral inductor (which has a large self-inductance L').

![Figure 3: Layout of a) resonant element, and b) receiver.](image)

Scaling rules that allow designs used for one value of static magnetic field B_0 to be adapted for another may be developed as follows. The Larmor frequency scales with B_0. Assuming the dielectric constant of tissue is roughly independent of frequency near 100 MHz, the critical length for standing wave excitation is inversely proportional to B_0 and hence the element length must scale inversely with B_0. In the layout of Fig. 3, many component values are approximately proportional to Λ, and must therefore be inversely proportional to B_0. Conveniently, appropriate scaling of element length then yields the correct resonant frequency automatically, and leaves the characteristic impedance and transducer matching condition unchanged. At low frequency, Q-factor scales with B_0, and the detector yields the correct resonant frequency automatically, and hence the element length for standing wave excitation is inversely proportional to B_0. The detectors are laid alongside inductors.

Table 1: Scaling of key parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size scaling</th>
<th>Field scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$[A]^1$</td>
<td>$[B_0]^1$</td>
</tr>
<tr>
<td>L</td>
<td>$[A]^1$</td>
<td>$[B_0]^1$</td>
</tr>
<tr>
<td>C</td>
<td>$[A]^1$</td>
<td>$[B_0]^1$</td>
</tr>
<tr>
<td>M</td>
<td>$[A]^1$</td>
<td>$[B_0]^1$</td>
</tr>
<tr>
<td>L'</td>
<td>$[A]^1$</td>
<td>$[B_0]^1$</td>
</tr>
<tr>
<td>$\alpha_0 = 1/\sqrt{LC}$</td>
<td>$[A]^{-1}$</td>
<td>$[B_0]^{-1}$</td>
</tr>
<tr>
<td>$Z_{0M} = \alpha_0 M$</td>
<td>$[A]^{1/2}$</td>
<td>$[B_0]^{1/2}$</td>
</tr>
<tr>
<td>$\alpha_0 M' = \sqrt{(Z_{0M} Z_{0M})}$</td>
<td>$[A]^{-1}$</td>
<td>$[B_0]^{-1}$</td>
</tr>
<tr>
<td>$Q = \alpha_0 L/R$</td>
<td>$[A]^{1/2}$</td>
<td>$[B_0]^{1/2}$</td>
</tr>
<tr>
<td>$\alpha_0 M'' = \sqrt{(RZ_{0M})}$</td>
<td>$[A]^{-1/2}$</td>
<td>$[B_0]^{-1/2}$</td>
</tr>
</tbody>
</table>

FABRICATION AND MEASUREMENT

Magneto-inductive catheter imaging probes have already been demonstrated at 1.5 T, based on an element length of 20 cm and an inductor width of 3.3 mm (for integration on a 2.2 mm dia scaffold). The implication of Table 1 is that a design for operation at 3 T may be developed from this by halving resonant element lengths and adjusting the detector position. CAD layouts for resonant elements and transducers were designed using these scaling rules, with $A = 10$ cm and the same inductor width (Fig 4a). Arrays of MI waveguides (Fig. 4b) were fabricated in 1 metre lengths by double sided lithography and etching of copper-clad Kapton (35 µm Cu on 25 µm polyimide), together with separate detector and transducer elements. Guides were separated, the resonant frequency was adjusted by trimming the capacitors, a detector was added, and the circuit was mounted on a catheter scaffold using heat shrink tube (Fig. 4c). Finally, a resonant transducer was mounted in a split Perspex clamp and attached to the cable (Fig. 4d).

Figure 4: a) CAD layout, b) completed cable array, c) catheter mounted cable, d) resonant transducer.

Electrical testing was carried out using an Agilent E5061A network analyzer. Parameters were first extracted from single and paired elements, by using inductive probes for measurement of resonant frequencies with in-built and surface mount capacitors for tuning, as $C = 12$ pF, $L = 130$ nH, $Q = 70$, $M = 39$ nH, $Z_{0M} = 31$ Ω, and $C' = 6.6$ pF, $L' = 230$ nH, and $Q' = 85$. The response of complete receivers was then measured, in the latter case using a small loop to couple to the detector. Fig. 5a compares the actual frequency dependence of the reflection (S_{11}) and transmission (S_{21}) of receivers designed for 1.5 T and 3.0 T. In each case the system is impedance matched, and the transmission peaks correctly at resonance, with a loaded Q-factor of $= 30$.

Figure 5: Receiver performance at 1.5 T and 3 T.
When the responses are plotted against normalized frequency (Fig. 6), the results are almost identical, directly validating the scaling rules.

Propagation losses were established from separate measurement of the transmission of a similar MI cable, as ≈ 8 dB. These losses are relatively high, and represent the major current limitation of magneto-inductive receivers.

![Figure 6: Normalised performance at 1.5 T and 3 T.](image)

MAGNETIC RESONANCE IMAGING

1H magnetic resonance imaging was carried out using a GE Discovery MR750 3 T clinical scanner, with the catheter receiver connected to the auxiliary coil input for signal reception, and a non-magnetic PIN diode connected across the input to enable the receiver to pass the pre-scan impedance test. The catheter was arranged parallel to the magnet bore, near the magnet isocentre. Imaging was carried out using a 2D fast spin echo sequence, with $TE = 42$ msec and TR in the range 400 – 1200 msec. Tests were initially carried out in an immersion tank containing a solution of 3.37 g/L NiCl$_2$·6H$_2$O and 2.4 g/L NaCl, with $T1 = 500$–800 ms and $T2 = 100$–200 ms (Fig. 7).

![Figure 7: Catheter receiver undergoing immersion test.](image)

Fig. 8a shows an axial slice across the catheter, obtained using the body coil. Here, the bright part of the image corresponds to the immersion liquid. Uniform brightness implies that the figure-of-eight element layout has correctly minimized coupling to the $B1$ field during excitation, and hence any perturbation to the local magnetization. Fig. 8b shows the corresponding slice obtained using the catheter receiver. Here, the image is brighter in the immediate vicinity of the catheter, but the brightness falls off rapidly with distance, confirming the limited FOV (ca 20 mm dia) of the catheter receiver. Fig. 8c shows a 3D surface reconstruction obtained from a set of sagittal images, which shows that the reception pattern is multi-lobed, with nulls at the element crossover points.

Tests were then carried out with the catheter receiver mounted on a cuboid phantom, initially without and later with an additional resolution test phantom at the tip (Fig. 9). The resolution phantom consisted of a cylindrical container filled with the same tissue-simulating solution, together with an array of small-diameter plastic tubes to give internal structure.

![Figure 8: Axial images obtained during immersion testing using a) the body coil and b) the catheter receiver; c) reception pattern reconstructed from sagittal images.](image)

Fig. 10a shows a coronal image obtained using the catheter receiver near the top of the cuboid, without the resolution phantom. An image is clearly obtained along the length of the cuboid, in the immediate vicinity of the catheter. The reception pattern is again multi-lobed, with the two brightest lobes at the bottom corresponding to the catheter tip and the remainder to the MI cable sections leading back to the transducer. Fig. 10b shows a further
surface reconstruction obtained from the entire stack of coronal images, which define the reception pattern in three-dimensional space. Some curvature of the FOV can be seen, which lies outside the region of gradient linearity.

CONCLUSIONS

Magneto-inductive catheter receivers for 1H MRI in a 3 T magnetic field have been successfully demonstrated, on the basis of scaling laws derived from the design layout and the lumped-element equivalent circuit. The circuits are realized in thin-film form, and are capable of integration on a wide variety of catheters to add internal imaging and catheter visualization. Further work is clearly required to establish any SNR advantage over surface coils, and to confirm intrinsic safety and durability before in vivo trials can begin. This work is in progress.

ACKNOWLEDGEMENTS

The support of The Wellcome Trust is gratefully acknowledged, as the assistance of Dr Munir Ahmad.

REFERENCES

CONTACT

R.R.A.Syms, tel: +44-207-594-6203; r.sym@imperial.ac.uk