The sweep stick mechanism of heavy particle clustering in 2d and 3d homogeneous, isotropic turbulence

S. W. Coleman and J. C. Vassilicos
Institute for Mathematical Sciences and Dept. of Aeronautics, Imperial College, London

24th March 2009
Several mechanisms proposed for the clustering of inertial particles.

- Ejection from vortical regions and concentration in strain regions - single scale flows. (Maxey 1987)
- Smoothing and filtering of fast timescales - acceleration statistics. (Ayyalasomayajula et. al 2006)
- Dissipative dynamics - multifractal attractors in phase space. (Bec et. al 2003)
- For high St formation of caustics - Falkovich et al. (2002), Wilkinson and Mehlig (2005)

For high Re turbulence, sweep-stick mechanism has been proposed by Goto and Vassilicos (2006) for St in the inertial range.
Clustering of inertial particles

- Locations of near empty spaces same for all Stokes numbers - size of these regions changes.

Fig.: Goto and Vassilicos, PoF, 18, 115103, (2006)
Consider small ($\ll \eta$), heavy ($\rho_p \gg \rho_f$) particles. Neglecting collisions, feedback on fluid

\begin{align}
\dot{\mathbf{r}} &= \mathbf{v} \\
\dot{\mathbf{v}} &= -\frac{1}{\tau_p} (\mathbf{v}(t) - \mathbf{u}(\mathbf{r}(t), t))
\end{align}

Effect of the drag is determined by the Stokes number $S_\eta = \tau_p / \tau_\eta$.

In the limit of small S_η - Maxey (1987)

\[\mathbf{v} \approx \mathbf{u}(\mathbf{r}(t), t) - \tau_p \mathbf{a}(\mathbf{r}, t) \]

When $\mathbf{a} = 0$, particles move with local fluid velocity $\mathbf{v}_p \approx \mathbf{u}$, when S_η is small.

Time needed for dissipative eddies to sweep past an Eulerian observer is η/u'. Much smaller than timescale of dynamics of these eddies $\eta/u_\eta \Rightarrow$ small scales are swept by energy containing eddies.

Implies persistence of small scale structure when frame of reference moves with fluid.

Propose that acceleration is nearly constant along a fluid trajectory. Equivalently, acceleration in a turbulent flow moves on average with velocity equal to the fluid velocity
Sweep-stick mechanism

- When \(a = 0 \), particles move with local fluid velocity \(v_p \approx u \), when \(S_\eta \) is small.
- Furthermore the acceleration field is swept by the local fluid velocity when \(|a| \ll a_{rms} \)
- So particles move with \(a = 0 \) points once they have stuck to them.
- They will eventually stick to them because particles move away from points where \(a \neq 0 \) with relative velocity \(\tau_p a \).
$a = 0$ points and inertial particles in 2D HIT

- 4096^2 pseudospectral DNS $L/\eta = 30$ - (Susumu Goto Kyoto University)- Inverse cascading HIT

Fig.: Goto and Vassilicos, PoF, 18, 115103, (2006)
\[\nabla \cdot \mathbf{v_p} \approx -\tau_p \nabla \cdot \mathbf{a} \] (4)

- E-vectors \((e_i)\) and e-values \(\lambda_i (\lambda_1 > \lambda_2 > \lambda_3)\) of symmetric part of \(\nabla \mathbf{a}\)
- Particles will only converge along directions \(e_i\) when \(\lambda_i > 0\)
- \(\mathbf{v_p} \cdot e_i \approx \mathbf{u} \cdot e_i - \tau_p \mathbf{a} \cdot e_i\)
- If \(\mathbf{a} \cdot e_i = 0\) surfaces/lines are swept with local fluid velocity then particles will move with these surfaces in all directions but only converge along directions which \(\lambda_i > 0\)
\(\mathbf{e}_1 \cdot \mathbf{a} = 0 \) points and inertial particles in 3D HIT

- 512\(^3\) pseudospectral DNS \(R_{\lambda} = 187 \) - (Susumu Goto Kyoto University)

Fig.: Goto and Vassilicos, PRL, 100, 054503, (2008)
Open issues

- Which mechanism - $a = 0$ or $e_1 \cdot a = 0$?
- Quantification of Stokes number dependency.
- Quantification of similarity of clusters.
- Is the zero acceleration picture a significant improvement over vorticity/strain picture?
- Are $a = 0$ or $e_1 \cdot a = 0$ swept?
- Validity of the Maxey relation at higher Stokes numbers.
\(\mathbf{e}_1 \cdot \mathbf{a} = 0 \) points are lines in 2D - extremely numerous

- How to validate sweeping of \(\mathbf{e}_1 \cdot \mathbf{a} = 0 \) points?
- Box size 4 integral scales.
$e_1 \cdot a = 0$ are lines

- $e_1 \cdot a = 0$ points are lines in 2D - extremely numerous
- How to validate sweeping of $e_1 \cdot a = 0$ points?
- Box size 0.25 integral scales.
Have zero acceleration points been missed in 3D?
Pair correlation and fractal dimensions

- Pair correlation function $m(r)$ (similar to radial distribution function) as a function of scale
- $m(r) \sim r^{-D_f}$ indicates cluster is self-similar.
Quantify the similarity between clusters by comparing the density of zero acceleration points $\mathbf{e}_1 \cdot \mathbf{a}$ in box i (ρ_a^i) with the density of inertial particles ρ_p^i at different box sizes ϵ.

$$c(\epsilon) = \frac{\sum_i (\rho_a^i - <\rho_a>)(\rho_p^i - <\rho_p>)}{[\sum_i (\rho_a^i - <\rho_a>)^2 \sum_i (\rho_p^i - <\rho_p>)^2]}$$

(5)
Both $\mathbf{a} = \mathbf{0}$ and $\mathbf{e}_1 \cdot \mathbf{a} = 0$ points show much higher correlation than uniform distribution.

$a = 0$ points are better correlated at length scales in the inertial range - $\eta = 5$ mesh sizes.

For smaller S_η where the distribution is more uniform $\mathbf{e}_1 \cdot \mathbf{a} = 0$ points show better correlation.
In 3D zero acceleration points clearly show the highest correlation.
Low Vorticity vs. low acceleration

- Pdfs of vorticity and a_x in the fluid and at particle positions.
- 2D inverse cascading DNS $4096^2 - L/\eta = 30$

At $S_\eta = 3.2$, $pdf(\omega)$ is indistinguishable from uniform points in the flow.
Particle distribution for $S_\eta = 3.2$

- Okubo-Weiss $Q = \frac{1}{2}(|S(x, t)|^2 - |\omega(x, t)|^2)$

- Centrifugal ejection from vortices cannot explain clustering for $S_\eta > 1$
The importance of sweeping

\[u(x, t) = \sum_{n=1}^{N_k} A_n \cos(k_n \cdot x + \omega_n t) + B_n \sin(k_n \cdot x + \omega_n t) \] (6)

- \(k_n \cdot A_n = k_n \cdot B_n = 0 \)
- Prescribed energy spectrum \(E(k) \sim k^{-5/3} \) over two decades of wavenumber space
- No sweeping - box size 4 ‘integral’ length scales.
Zero acceleration points in KS

- Sweeping is crucial for observing clustering with zero acceleration points.
Reformulation of the sweeping hypothesis

- Position of zero acceleration point z_a and define $V_a \equiv \dot{z}_a$

\[
\frac{\partial a}{\partial t} + V_a \cdot \nabla a = 0 \Rightarrow (7)
\]

\[
\frac{Da}{Dt} + (V_a - u) \cdot \nabla a = 0 \quad (8)
\]

- Applying Kolmogorov 41 scaling for Da/Dt and ∇a

\[
\langle (V_a - u)^2 \rangle^{1/2} \sim u' \left(\frac{L}{\eta} \right)^{-1/3} \quad (9)
\]

- As $L/\eta \to \infty$, zero acceleration points move on average with the local velocity u.

S. W. Coleman and J. C. Vassilicos ()
24th March 2009 22 / 27
Scaling of $V_a - u$ in 2D HIT and KS

- In KS, zero accn points move increasingly slowly relative to large scale motions as $L/\eta \to \infty$.
Statistical analysis of V_a and u at $a = 0$ points - 2D HIT

- **2D HIT**

- **3D HIT**
```latex
\textbf{Maxey relation}

- Stick part of the mechanism is based on $\mathbf{v} \approx \mathbf{u}(\mathbf{r}(t), t) - \tau_p \mathbf{a}(\mathbf{r}, t)$ for small $\tau_p$.
- Not expected to hold at higher $\tau_p$ where clustering with zero accn points is still observed.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Graph showing the relationship between $v$ and $\tau_p$ for different values of $S_\eta$.}
\end{figure}
```
Stickiness

- Crucial point is \(\nu \approx u(r(t), t) \) at \(a = 0 \) points
- To move away from \(a = 0 \) points need \(\tau_p |a| > u' \) - stickiness changes for different Stokes numbers.
- For low \(\tau_p \) whole field is ‘sticky’

Fig. Goto and Vassilicos, PoF, 18, 115103, (2006)
Conclusions

- Propose the sweep-stick mechanism to explain the similarity of heavy particle and inertial particle clusters in 2D/3D HIT in the inertial range.
- There is no need for a modified \((\mathbf{e}_1 \cdot \mathbf{a})\) sweep stick mechanism in 3D - zero acceleration points are present in 3D.
- The clustering of inertial particles mimicking that of zero acceleration points is stronger than that of inertial particles being in low vorticity regions.
- Centrifugal ejection cannot explain clustering at higher \(S_\eta\).
- Sweeping is crucial for obtaining the similarity between \(\mathbf{a} = 0\) clusters and heavy particle clusters - it cannot be observed in standard KS.