Using reservoir mixing to evaluate reservoir compartmentalization from appraisal data – validation using data from the Horn Mountain field, Gulf of Mexico

Jason Goa, Craig Smalleyb and Ann Muggeridgea

aDepartment of Earth Science and Engineering, Imperial College, London, SW7 2AZ
bBP, Sunbury-on-Thames, Middlesex TW16 7BP
Overview: Reservoir compartmentalization

- segregation of the reservoir into segments that behave as separate flow units
- caused by barriers or baffles to fluid flow
Overview

• Horn Mountain overview
• Previous work done on Horn Mountain compartmentalization
• New workflow to assess reservoir compartmentalization
• Results
• Validation
• Conclusion
Horn Mountain oil field

- Discovered in 1999 by Vastar, currently 100% BP owned

- Middle Miocene Reservoirs
 - **J Sand** (~12,200’ TVDSS)
 - **M Sand** (~14,200’ TVDSS)

- Faults appear to separate both reservoirs into northern, central and eastern fault block (**NFB, CFB and EFB**)

Milkov et al (2007)

- Time-lapse geochemistry (TLG)
 - oil fingerprints from production samples are analyzed and compared with preproduction fluids

- Compartmentalization risk matrix (CRM)
 - risk of flow barriers between wells are assigned for each data set (e.g., pressure, geochemical data)
 - Traffic light indicators (low risk = green, high risk = red)
Limitations/gaps in present methods: TLG

- Production samples are needed!
- Not feasible for commingled wells

Different oil fingerprints!

Fault permeability, $k = ???$

Time-lapse geochemistry

Barrier?
Limitations/gaps in present methods: CRM

Compartmentalization risk matrix
- Qualitative
- Large uncertainty in conclusions remain
Alternative method: Appraisal data + Reservoir mixing

Fault permeability, \(k = 0.01 \text{ mD} \)

Pressure dissipation model

\[
\frac{k}{\mu} \frac{\partial^2 P}{\partial z^2} = \phi c^e \frac{\partial P}{\partial t}
\]
Workflow to evaluate reservoir compartmentalization

1. Appraisal data
 - Core/Seismic
 - Wells/Well pairings
 - SCAL
 - Reservoir properties
 - Pressure
 - Pressure shift
 - PVT
 - Density contrast

2. Mixing processes
 - Molecular diffusion
 - Pressure dissipation
 - Gravitational overturning

3. Mixing time-scales
 - Mixing time-scales < Perturbation time
 - variation holds for the predicted MIXING PERMEABILITY /LENGTH
 - Barrier, Baffle or none
Appraisal data: seismic – lateral compartmentalization

- Geological faults from seismic data
- Is it sealing or transmitting?
- Well pairings are chosen to assess lateral reservoir connectivity

![Diagram with geological faults and well locations]
Appraisal data: MDT and PVT

- Excess pressure plots by Brown, 2003 provides better pressure shift interpretation

\[\Delta \rho = 15 \text{ kg/m}^3 \]

Molecular diffusion

Mixing time > perturbation time (15 My)
Composition is not diagnostic - Fluid is still mixing!

Well pairing	Seismic	Pressure	PVT	Geochemistry	Risk	time-scale, My
#1ST1 - #1ST2 | | | | | | 19
#1ST1 - #3 | | | | | | 19
#2ST1 - #2ST3 | | | | | | 44
#2ST1 - #3 | | | | | | 24
To maintain present variations in pressure, reservoir permeability should be at least 1 mD – existence of barriers!

Pressure dissipation – no barrier \((t = 15 \text{ My})\)

NOTE: Pressure shift is below the 2psi accuracy threshold

\[k = 1.2 \text{ mD} \]

\[k_{\text{actual}} = 916 \text{ mD} \]

<table>
<thead>
<tr>
<th>Well pairing</th>
<th>Seismic</th>
<th>Pressure*</th>
<th>PVT</th>
<th>Geochemistry</th>
<th>Risk</th>
<th>Mixing permeability, mD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1ST1 - #1ST2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>#1ST1 - #3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>#2ST1 - #2ST3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>#2ST1 - #3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
</tbody>
</table>

*pressure difference (psi) between wells.
To maintain present variations in pressure, fault permeability should be at least 0.01 mD – existence of barriers!

Pressure dissipation – continuous fault ($t = 15$ My)

$k = 0.01$ mD

Leaky edges

Observation well

Seal (zero permeability)

L

Seal (zero permeability)

pressure difference (psi) between wells.
To maintain present variations in density, reservoir permeability should be at least 170 nD – existence of barriers!

Gravitational overturning ($t = 15$ My)

$k = 170$ nD

<table>
<thead>
<tr>
<th>Well pairing</th>
<th>Seismic</th>
<th>Pressure</th>
<th>PVT*</th>
<th>Geochemistry</th>
<th>Risk</th>
<th>Mixing permeability, nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1ST1 - #1ST2</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>#1ST1 - #3</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>#2ST1 - #2ST3</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>#2ST1 - #3</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

*density contrast (kg/m^3) between wells.
Appraisal data + Reservoir mixing in Reservoir J

Pressure dissipation – continuous fault \((t = 15 \text{ My})\)

\[k = 0.08 \text{ mD} \]

<table>
<thead>
<tr>
<th>Well pairing</th>
<th>Seismic</th>
<th>Pressure*</th>
<th>PVT*</th>
<th>Geochemistry</th>
<th>Risk</th>
<th>Mixing permeability, nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1ST1 - #2</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
<tr>
<td>#1ST1 - #2ST2</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*pressure difference (psi) between wells.
How extensive are these shale barrier?
Vertical compartmentalization - #2

- **Pressure shift ~ 4psi**
- **Reservoir thickness = 10 m**
- **Shale thickness = 100 m**
- **Shale length, L ~ 2km**
- **Shale permeability, k ~ 16 mD**

Graph showing pressure dissipation around a shale layer.

Graph showing mixing time (years) vs. shale length (m).

Legend:
- Pressure dissipation
- Reservoir thickness
- Shale thickness
- Shale length
- Shale permeability
- Pressure shift

Map showing fault lines, water injectors, and appraisal wells.

Annotations on map:
- Reservoir M
- MC 126
- Shale-filled channel
- Faults
- Producers
- NKB
- 125.000
- 13,000
- 14,000
- 15,000
- 16,000
- 17,000
- 18,000
Validation: production data

- Inter-well connectivity are reflected by the correlation rates between injectors and produces using Spearman rank correlation

- Soeriawinata-Kelkar method
 - Choose producer and adjacent injector with highest correlation (>0.25)
 - Find injector that produces highest significant cross correlation improvement (>0.5)
 - Find injector that has high cumulative cross correlation increment (>0.01)

- Applied to Reservoir M only – Reservoir J has no injectors

Validation: production data

<table>
<thead>
<tr>
<th>Producer</th>
<th>Injectors</th>
<th>Cross correlation</th>
<th>Initial assessment</th>
<th>Cumulative cross correlation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>A6</td>
<td>0.43</td>
<td>good</td>
<td>0.43</td>
<td>Reject A7</td>
</tr>
<tr>
<td>A4</td>
<td>A7</td>
<td>-0.09</td>
<td>poor</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>A6</td>
<td>0.6</td>
<td>good</td>
<td>0.6</td>
<td>Reject A7</td>
</tr>
<tr>
<td>A3</td>
<td>A7</td>
<td>0.18</td>
<td>poor</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>A6</td>
<td>0.47</td>
<td>good</td>
<td>0.47</td>
<td>Reject A7</td>
</tr>
<tr>
<td>A2</td>
<td>A7</td>
<td>0.08</td>
<td>poor</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>
Validation: production data

<table>
<thead>
<tr>
<th>Producer</th>
<th>Injectors</th>
<th>Cross correlation</th>
<th>Initial assessment</th>
<th>Cumulative cross correlation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A7</td>
<td>-0.13</td>
<td>poor</td>
<td>-0.13</td>
<td>Reject both</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>0.35</td>
<td>good</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>A7</td>
<td>0.11</td>
<td>poor</td>
<td>0.11</td>
<td>Reject both</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>0.56</td>
<td>good</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>A7</td>
<td>0.02</td>
<td>poor</td>
<td>0.02</td>
<td>Reject both</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>0.48</td>
<td>good</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>A7</td>
<td>0.09</td>
<td>poor</td>
<td>0.09</td>
<td>Reject both</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>0.55</td>
<td>good</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>
Milkov’s TLG vs. Spearman rank correlation vs. Reservoir mixing

Fault permeability \(k = 0.02 \) mD

Flow barrier separating NFB and CFB
TLG: No oil arrived from the NFB to the existing producing well A10 (CFB) across the fault separating NFB and CFB

1. there is a flow barrier separating NFB and CFB

2. drill another producer in the NFB or recomplete appraisal wells penetrating this fault block

Fault permeability \(k = 0.08 \text{ mD} \)
Conclusions

• Reservoir compartmentalization can be identified at an early stage using the devised new workflow even without production data.

• Barrier/baffle properties (e.g., Fault permeabilities or shale lengths) can be estimated using reservoir mixing rates.

• Faults identified within the Horn Mountain field are relatively impermeable and serve as barriers for oil migration as confirmed not only by using TLG and inter-well connectivity but also by using analytical expressions to estimate fluid mixing time-scales.
Acknowledgements

We thank

for supporting this research and

for permission to publish this work.